Part Number Hot Search : 
06VDK1 UL1540 UL1540 9435G FMS00 UL1540 FA4313U 4CDDT
Product Description
Full Text Search
 

To Download VNQ810PTR-E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? october 2003 - revision 1.2 (working document) 1/20 this is preliminary information on a new product foreseen to be developed. details are subject to change without notice. vnq810p quad channel high side driver n cmos compatible inputs n open drain status outputs n on state open load detection n off state open load detection n shorted load protection n undervoltage and overvoltage shutdown n protection against loss of ground n very low stand-by current n reverse battery protection (**) description the vnq810p is a quad hsd formed by assembling two vnd810 chips in the same so-28 package. the vnd810 is a monolithic device made by using stmicroelectronics vipower m0-3 technology, intended for driving any kind of load with one side connected to ground. active v cc pin voltage clamp protects the device against low energy spikes (see iso7637 transient compatibility table). active current limitation combined with thermal shutdown and automatic restart protects the device against overload. the device detects open load condition both in on and off state . output shorted to v cc is detected in the off state. device automatically turns off in case of ground pin disconnection. type r ds(on) i out v cc vnq810p 160 m w (*) 3.5 a (*) 36 v so-28 (double island) order codes package tube t&r so-28 vnq810p vnq810p13tr (*) per each channel absolute maximum rating (**) see application schematic at page 9 symbol parameter value unit v cc dc supply voltage 41 v - v cc reverse dc supply voltage - 0.3 v - i gnd dc reverse ground pin current - 200 ma i out dc output current internally limited a - i out reverse dc output current - 6 a i in dc input current +/- 10 ma i stat dc status current +/- 10 ma v esd electrostatic discharge (human body model: r=1.5k w; c=100pf) - input - status - output - v cc 4000 4000 5000 5000 v v v v e max maximum switching energy (l=1.38mh; r l =0 w ; v bat =13.5v; t jstart =150oc; i l =5a) 23 mj p tot power dissipation (per island) at t lead =25c 6.25 w t j junction operating temperature internally limited c t stg storage temperature - 55 to 150 c target specification
2/20 vnq810p block diagram overtemp. 1 v cc1,2 gnd1,2 input1 output1 overvoltage logic driver 1 status1 v cc clamp undervoltage clamp 1 openload on 1 current limiter 1 openload off 1 output2 driver 2 clamp 2 openload on 2 openload off 2 overtemp. 2 input2 status2 current limiter 2 overtemp. 3 v cc3,4 gnd3,4 input3 output3 overvoltage logic driver 3 status3 v cc clamp undervoltage clamp 3 openload on 3 current limiter 3 openload off 3 output4 driver 4 clamp 4 openload on 4 openload off 4 overtemp. 4 input4 status4 current limiter 4
3/20 vnq810p connection diagram (top view) current and voltage conventions v cc 1,2 gnd 1,2 input1 status1 status2 v cc 1,2 v cc 3,4 gnd 3,4 input3 status3 v cc 3,4 v cc 3,4 output4 output4 output4 output3 output2 output2 output2 output1 v cc 1,2 output3 output3 output1 output1 input2 status4 input4 1 14 15 28 i s3,4 i gnd1,2 output3 v cc3,4 gnd 1,2 input2 i out3 v cc1,2 v out4 output2 i out2 v out3 input1 i in1 status1 i stat1 output1 i out1 output4 i out4 v out2 v out1 i in2 i stat2 i stat3 i in4 i stat4 status2 status3 status4 input3 input4 v stat4 v in4 v stat3 v in3 v stat2 i in3 v in2 v stat1 v in1 i s1,2 v cc1,2 gnd 3,4 i gnd3,4 v cc3,4
4/20 vnq810p thermal data (per island) (*) when mounted on a standard single-sided fr-4 board with 0.5cm 2 of cu (at least 35 m m thick) connected to all v cc pins. horizontal mounting and no artificial air flow. electrical characteristics (8v8v 160 320 m w m w i s (**) supply current off state; v cc =13v; v in =v out =0v off state; v cc =13v; v in =v out =0v; t j =25c on state; v cc =13v; v in =5v; i out =0a 12 12 5 40 25 7 m a m a ma i l(off1) off state output current v in =v out =0v 0 50 m a i l(off2) off state output current v in =0v; v out =3.5v -75 0 m a i l(off3) off state output current v in =v out =0v; v cc =13v; t j =125c 5 m a i l(off4) off state output current v in =v out =0v; v cc =13v; t j =25c 3 m a symbol parameter test conditions min typ max unit t d(on) turn-on delay time r l =13 w from v in rising edge to v out =1.3v 30 m s t d(off) turn-off delay time r l =13 w from v in falling edge to v out =11.7v 30 m s dv out /dt (on) turn-on voltage slope r l =13 w from v out =1.3v to v out =10.4v see relative diagram v/ m s dv out /dt (off) turn-off voltage slope r l =13 w from v out =11.7v to v out =1.3v see relative diagram v/ m s symbol parameter test conditions min typ max unit v il input low level 1.25 v i il low level input current v in =1.25v 1 m a v ih input high level 3.25 v i ih high level input current v in =3.25v 10 m a v i(hyst) input hysteresis voltage 0.5 v v icl input clamp voltage i in =1ma i in =-1ma 66.8 -0.7 8v v 1
5/20 vnq810p 2 electrical characteristics (continued) v cc - output diode status pin (per each channel) protections (per each channel) openload detection (per each channel) symbol parameter test conditions min typ max unit v f forward on voltage -i out =0.5a; t j =150c 0.6 v symbol parameter test conditions min typ max unit v stat status low output voltage i stat =1.6ma 0.5 v i lstat status leakage current normal operation; v stat =5v 10 m a c stat status pin input capacitance normal operation; v stat =5v 100 pf v scl status clamp voltage i stat =1ma i stat =-1ma 66.8 -0.7 8v v symbol parameter test conditions min typ max unit t tsd shut-down temperature 150 175 200 c t r reset temperature 135 c t hyst thermal hysteresis 7 15 c t sdl status delay in overload conditions t j >t tsd 20 m s i lim current limitation 5.5v v ol t dol(on) t j > t tsd
6/20 vnq810p t t v outn v inn 80% 10% dv out /dt (on) td (off) 90% dv out /dt (off) td (on) switching time waveforms truth table conditions input output status normal operation l h l h h h current limitation l h h l x x h (t j < t tsd ) h (t j > t tsd ) l overtemperature l h l l h l undervoltage l h l l x x overvoltage l h l l h h output voltage > v ol l h h h l h output current < i ol l h l h h l
7/20 vnq810p electrical transient requirements on v cc pin iso t/r 7637/1 test pulse test levels i ii iii iv delays and impedance 1 -25 v -50 v -75 v -100 v 2 ms 10 w 2 +25 v +50 v +75 v +100 v 0.2 ms 10 w 3a -25 v -50 v -100 v -150 v 0.1 m s 50 w 3b +25 v +50 v +75 v +100 v 0.1 m s 50 w 4 -4 v -5 v -6 v -7 v 100 ms, 0.01 w 5 +26.5 v +46.5 v +66.5 v +86.5 v 400 ms, 2 w iso t/r 7637/1 test pulse test levels results i ii iii iv 1cccc 2cccc 3acccc 3bcccc 4cccc 5ceee class contents c all functions of the device are performed as designed after exposure to disturbance. e one or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.
8/20 vnq810p 1 open load without external pull-up status n input n normal operation undervoltage v cc v usd v usdhyst input n overvoltage v cc status n input n status n status n input n status n input n open load with external pull-up undefined overtemperature input n status n t tsd t r figure 1: waveforms t j output voltage n v cc v ov v ol v out >v ol
9/20 vnq810p gnd protection network against reverse battery solution 1: resistor in the ground line (r gnd only). this can be used with any type of load. the following is an indication on how to dimension the r gnd resistor. 1) r gnd 600mv / 2(i s(on)max ). 2) r gnd 3 (- v cc ) / (-i gnd ) where -i gnd is the dc reverse ground pin current and can be found in the absolute maximum rating section of the of the devices datasheet. power dissipation in r gnd (when v cc <0: during reverse battery situations) is: p d = (-v cc ) 2 /r gnd this resistor can be shared amongst several different hsd. please note that the value of this resistor should be calculated with formula (1) where i s(on)max becomes the sum of the maximum on-state currents of the different devices. please note that if the microprocessor ground is not common with the device ground then the r gnd will produce a shift (i s(on)max * r gnd ) in the input thresholds and the status output values. this shift will vary depending on many devices are on in the case of several high side drivers sharing the same r gnd . if the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the st suggest to utilize solution 2. v cc1,2 output2 +5v r prot output1 status1 input1 +5v status2 input2 +5v d gnd r gnd v gnd gnd1,2 gnd3,4 output3 output4 m c v cc3,4 status3 input3 status4 input4 +5v +5v r prot r prot r prot r prot r prot r prot r prot d ld note: channels 3 & 4 have the same internal circuit as channel 1 & 2. application schematic
10/20 vnq810p solution 2: a diode (d gnd ) in the ground line. a resistor (r gnd =1k w) should be inserted in parallel to d gnd if the device will be driving an inductive load. this small signal diode can be safely shared amongst several different hsd. also in this case, the presence of the ground network will produce a shift ( j 600mv) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. this shift will not vary if more than one hsd shares the same diode/resistor network. series resistor in input and status lines are also required to prevent that, during battery voltage transient, the current exceeds the absolute maximum rating. safest configuration for unused input and status pin is to leave them unconnected. load dump protection d ld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds v cc max dc rating. the same applies if the device will be subject to transients on the v cc line that are greater than the ones shown in the iso t/r 7637/1 table. m c i/os protection: if a ground protection network is used and negative transient are present on the v cc line, the control pins will be pulled negative. st suggests to insert a resistor (r prot ) in line to prevent the m c i/os pins to latch-up. the value of these resistors is a compromise between the leakage current of m c and the current required by the hsd i/os (input levels compatibility) with the latch-up limit of m c i/os. -v ccpeak /i latchup r prot (v oh m c -v ih -v gnd ) / i ihmax calculation example: for v ccpeak = - 100v and i latchup 3 20ma; v oh m c 3 4.5v 5k w r prot 65k w . recommended r prot value is 10k w.
11/20 vnq810p open load detection in off state off state open load detection requires an external pull-up resistor (r pu ) connected between output pin and a positive supply voltage (v pu ) like the +5v line used to supply the microprocessor. the external resistor has to be selected according to the following requirements: 1) no false open load indication when load is connected: in this case we have to avoid v out to be higher than v olmin ; this results in the following condition v out =(v pu /(r l +r pu ))r l 12/20 vnq810p high level input current input clamp voltage status leakage current off state output current status clamp voltage status low output voltage -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 iih (ua) vin=3.25v -50 -25 0 25 50 75 100 125 150 175 tc (c) 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8 vicl (v) iin=1ma -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0.01 0.02 0.03 0.04 0.05 ilstat (ua) vstat=5v -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 vstat (v) istat=1.6ma -50 -25 0 25 50 75 100 125 150 175 tc (c) 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8 vscl (v) istat=1ma -50 -25 0 25 50 75 100 125 150 175 tc (oc) 0 0.16 0.32 0.48 0.64 0.8 0.96 1.12 1.28 1.44 1.6 il(off1) (ua) off state vcc=36v vin=vout=0v
13/20 vnq810p input hysteresis voltage input low level on state resistance vs t case on state resistance vs v cc input high level openload on state detection threshold -50 -25 0 25 50 75 100 125 150 175 tc (c) 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 vih (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 vil (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 vhyst (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 50 100 150 200 250 300 350 400 ron (mohm) iout=0.5a vcc=8v; 13v & 36v 5 10152025303540 vcc (v) 50 75 100 125 150 175 200 225 250 275 300 ron (mohm) iout=0.5a tc= - 40c tc= 25c tc= 150c -50 -25 0 25 50 75 100 125 150 175 tc (c) 10 15 20 25 30 35 40 45 50 55 60 iol (ma) vcc=13v vin=5v
14/20 vnq810p overvoltage shutdown turn-on voltage slope turn-off voltage slope i lim vs t case openload off state voltage detection threshold -50 -25 0 25 50 75 100 125 150 175 tc (c) 30 32 34 36 38 40 42 44 46 48 50 vov (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 vol (v) vin=0v -50 -25 0 25 50 75 100 125 150 175 tc (oc) 0 100 200 300 400 500 600 700 800 900 1000 dvout/dt(on) (v/ms) vcc=13v rl=13ohm -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 50 100 150 200 250 300 350 400 450 500 dvout/dt(off) (v/ms) rl=13ohm -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 1 2 3 4 5 6 7 8 9 10 ilim (a) vcc=13v
15/20 vnq810p maximum turn off current versus load inductance a = single pulse at t jstart =150oc b= repetitive pulse at t jstart =100oc c= repetitive pulse at t jstart =125oc conditions: v cc =13.5v values are generated with r l =0 w in case of repetitive pulses, t jstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves b and c. v in , i l t demagnetization demagnetization demagnetization 1 10 0.01 0.1 1 10 100 l(mh) i lmax (a) a b c
16/20 vnq810p so-28 double island pc board thermal calculation according to the pcb heatsink area r tha = thermal resistance junction to ambient with one chip on r thb = thermal resistance junction to ambient with both chips on and p dchip1 =p dchip2 r thc = mutual thermal resistance r thj-amb vs. pcb copper area in open box free air condition chip 1 chip 2 t jchip1 t jchip2 note on off r tha x p dchip1 + t amb r thc x p dchip1 + t amb off on r thc x p dchip2 + t amb r tha x p dchip2 + t amb on on r thb x (p dchip1 + p dchip2 ) + t amb r thb x (p dchip1 + p dchip2 ) + t amb p dchip1 =p dchip2 on on (r tha x p dchip1 ) + r thc x p dchip2 + t amb (r tha x p dchip2 ) + r thc x p dchip1 + t amb p dchip1 1 p dchip2 so-28 double island thermal data layout condition of r th and z th measurements (pcb fr4 area= 58mm x 58mm, pcb thickness=2mm, cu thickness=35 m m, copper areas: 0.5cm 2 , 3cm 2 , 6cm 2 ). 10 20 30 40 50 60 70 01234567 pcb cu heats ink area (cm ^2)/island rthj_am b (c/w) r tha r thb r thc
17/20 vnq810p thermal fitting model of a four channels hsd in so-28 pulse calculation formula thermal parameter area/island (cm 2 )0.56 r1=r7=r13=r15 (c/w) 0.35 r2=r8=r14=r16 (c/w) 1.8 r3=r9 (c/w) 4.5 r4=r10 (c/w) 11 r5=r11 (c/w) 15 r6=r12 (c/w) 30 13 c1=c7=c13=c15 (w.s/c) 0.0001 c2=c8=c14=c16 (w.s/c) 7.00e-04 c3=c9 (w.s/c) 6.00e-03 c4=c10 (w.s/c) 0.2 c5=c11 (w.s/c) 1.5 c6=c12 (w.s/c) 5 8 r17=r18 (c/w) 150 z th d r th d z thtp 1 d C () + = where d t p t = so-28 thermal impedance junction ambient single pulse 0.01 0.1 1 10 100 0.0001 0.001 0.01 0.1 1 10 100 1000 time(s) zth(c/w) 6 cm ^2/island 3 cm ^2/island 0,5 cm ^2/island one channel on two channels on on same chip pd1 c1 r4 c3 c4 r3 r1 r6 r5 r2 c5 c6 c2 pd2 r14 c13 c1 4 r13 tj_1 tj_2 t_amb pd3 c7 r10 c9 c10 r9 r7 r12 r11 r8 c1 1 c1 2 c8 pd4 r16 c15 c16 r15 tj_3 tj_4 r17 r18
18/20 vnq810p dim. mm. inch min. typ max. min. typ. max. a 2.65 0.104 a1 0.10 0.30 0.004 0.012 b 0.35 0.49 0.013 0.019 b1 0.23 0.32 0.009 0.012 c 0.50 0.020 c1 45 (typ.) d 17.7 18.1 0.697 0.713 e 10.00 10.65 0.393 0.419 e 1.27 0.050 e3 16.51 0.650 f 7.40 7.60 0.291 0.299 l 0.40 1.27 0.016 0.050 s8 (max.) so-28 mechanical data
19/20 vnq810p so-28 tube shipment (no suffix) all dimensions are in mm. base q.ty 28 bulk q.ty 700 tube length ( 0.5) 532 a 3.5 b 13.8 c ( 0.1) 0.6 tape and reel shipment (suffix 13tr) base q.ty 1000 bulk q.ty 1000 a (max) 330 b (min) 1.5 c ( 0.2) 13 f 20.2 g (+ 2 / -0) 16.4 n (min) 60 t (max) 22.4 tape dimensions according to electronic industries association (eia) standard 481 rev. a, feb 1986 all dimensions are in mm. tape width w 16 tape hole spacing p0 ( 0.1) 4 component spacing p 12 hole diameter d ( 0.1/-0) 1.5 hole diameter d1 (min) 1.5 hole position f ( 0.05) 7.5 compartment depth k (max) 6.5 hole spacing p1 ( 0.1) 2 top cover tape end start no components no components components 500mm min 500mm min empty components pockets saled with cover tape. user direction of feed a c b reel dimensions
20/20 vnq810p information furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for the co nsequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. no license is granted by implication or otherwise under any patent or patent rights of stmicroelectronics. specifications mentioned in this p ublication are subject to change without notice. this publication supersedes and replaces all information previously supplied. stmicroelectron ics products are not authorized for use as critical components in life support devices or systems without express written approval of stmicr oelectronics. the st logo is a trademark of stmicroelectronics ? 2003 stmicroelectronics - printed in italy- all rights reserved. stmicroelectronics group of companies australia - brazil - canada - china - finland - france - germany - hong kong - india - israel - italy - japan - malaysia - malta - morocco - singapore - spain - sweden - switzerland - united kingdom - u.s.a. http://www.st.com


▲Up To Search▲   

 
Price & Availability of VNQ810PTR-E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X